
\ 

X- 641 -64-193 
1 

Y TMX-5:082 ~ 

(ACCESSION N U M B E R )  ITHRUJ 3c (PACES) 

L L  
x o  
K O  
O K  

g 5  

BY ELECTRON COLL1SlO.N 

BY *, , 

KAZEM OMID-VAR 

c . -  

, 
\ 

., 

JULY 1964 

FLIGHT CENTER 
MARYLAND 

- \ .  

ATOM 
\ 

0 

’ ..ti- 

; 1. 
< - -.- . .. 

&. . 
mi- + 



SUMMARY 

Within the Born approximation and employing parabolic coordinates 
k. 

an expression is  found which gives the c ros s  section, induced by elec- 

.- t ron collision, for excitation of the hydrogen atom f rom any initial state 

to any final state. Using this expression the c ros s  section in the energy 

range of interest  in plasma calculations for the following transitions 

among the principal quantum numbers a r e  tabulated: n = 1, n' = 2 , 3 , 4,  

5, 6 ,  7, 8, 9 ,  10; n = 2 ,  n' = 3 ,  4, 5, 6 ,  7 ,  8; n = 3 ,  n' = 4, 5 ,  6 ,  7, 8; n = 4 ,  

n' = 5, 6 ;  n = 5, n' = 6 .  In conclusion a curve for the total inelastic col- 

lision of electrons and the hydrogen atom in its first five energy levels 

is  constructed. 



1. INTRODUCTION 

The excitation c ros s  section in hydrogen induced by electron col- 

lision calculated in the Born approximation is  proportional to the 

squared modulus of the atomic form factor given by 

where $i and +f a r e  the initial and final eigenfunctions of the atomic 

electron and K is the magnitude of momentum transfer  of the incident 

electron. In this paper a closed form is found for the above expression 

when +i and $f a r e  hydrogenic functions expressed in parabolic coor- 

dinates. Elwertl  (1955) has  evaluated this expression with s imilar  c 

specifications, although his final result is in differential form. 
'r 

The main concern of this paper is the evaluation of the electron 

impact induced excitation c ros s  section between two arb i t ra ry  levels 

of hydrogen, calculated in the Born approximation. Up to now many 

calculations in  the Born approximation have been car r ied  out in this 

respect,  and tables of c ross  sections with initial states in the range 

1-5 principal quantum numbers and final states 2-10 p'rincipal quantum 

numbers a r e  

a r e  only for certain substates. 

although for higher levels the calculatioqs 

In this paper,  after formulationof the problem, the resul ts  in 

parabolic coordinates a r e  compared with those in  spherical  coordinates, 
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and their consistencies a r e  examined. The calculation is  then extended 

to  higher levels, for which results a r e  not available. All c ros s  sections 

a r e  listed in different tables. It is hoped that these tables will be 

useful in plasma and astrophysical calculations. 

J 

2 



. 

II. FORMULATION 

Excitation Amplitude 

Let the propagation vector of the exciting electron before and af te r  

collision be designated by k, and k,, and the states of the atom in 

parabolic coordinates before and after collision by n ,  n2  m and n1  n2  m. 

The excitation c ros s  section in atomic units for such a collision i s  then 

given by l1 

/ I  

N being the normalization factor of the e, 7) eigenfunctions given 

by Bethe and Salpeter,12 and also found in I. Similarly, N I t i s  the 

factor corresponding to  e', 7 ) ' .  With this equation and the generating 

function of the associated Laguerre polynomials (cf. Eq. ( 3 7 ) ,  I) it 

"l"2 

"1 " 2  
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follows that 

' 

V(nl n2 m, "1) n; m) 

n2  =O 

1 
- 4 Nn1n2 Nn ;n 2' 1 
- 

[(1- s )  (1- t )  (1 - s ' )  (1-  t q m + l  

1 
- - F N  " 1 9  N t n  "l"2 - au 
- 

m + l  ap  ' 
[ (1-s)  (1-  t )  (1- s ' )  (1-  t ' ) ]  

where we have introduced 

= ~ ( a t a ' )  1 , iK - - 
q -  - 2 '  

t ").I 77"' dq 
at 

1 - t '  

1 -  s '  1-t' 

( 3 )  

(4) 
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Before we ca r ry  out the differentiation of U with respect  to p ,  we 

expand U in  powers of s, s', t, t ' .  .Consider the expansion 

( 6 )  
Y 414 1) (0, 0) representing the and the 8 i thde r iva t ives  of y ( s ,  t )  with 

respect to  s and t ,  evaluated at  s = t 0. To evaluate y 414; ( s ,  s ' )  , 

it is necessary to introduce 

- a ' s '  
1 - s '  

-- v -  as 9 
- 

t 1 - s  u -  

then 

y(u,  v) = ( p t q + u  tv)-(m+l) , 

It is convenient to  introduce also 

g = ( l - s ) - l ,  h ( l - s ' ) - '  . 

Then, making note of the relations 

dv 
ds ' 
- -  du 

- a ' h '  , - ds = a g 2  t 

(7) 

( 9 )  
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it follows that 

y y s ,  S I )  = a g 2 y '  (u ,  v )  , 

y y s ,  s ' )  = a g y (u ,  v )  i- 2ag3y'  ( u ,  v )  , 2 4 2  

y' (u ,  v )  being the vth  

v. 

derivative of y(u,  v )  with respect to either u o r  

Inspection of the above equation shows that in  general  we can write 

U 
v= 1 

with C(v, 4 )  some constants. 

provided we let  t - s ' and a 2  - a  in the la t ter  equation. The dependence 

.e of y40 ( s ,  s ' )  on y v ( u ,  v )  i s  then s imilar  to  the dependence of y ( s ,  t )  

on y' ( u ,  v )  in I, and the C ( v ,  8) satisfies the following recursion 

formula (cf. Eq. ( 6 0 ) ,  I) 

This equation is identical to  Eq. (59),  I, 

C ( V ,  4t 1) = ( 4 t v ) C ( v ,  4 )  t C ( v -  1, 4 )  , 

with the boundary conditions, 

C ( v ,  4 )  = 0 when v = 0 or v > & ,  , C(0, 0)  = C(1, 1) = 1 . (11) 

A table of values of C(v,  4 )  is  given in I. 
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. 

Finally, corresponding to Eq. (61), I, o r  by direct  deduction, we 

get 

4,  4 i  

v1=0 v1=0 

u1 ,vl 41+v, &+u; UI+UI) 

Y ( s ,  S t )  = c C ( v , ,  4,) c(v;, 4;)  a a ' g Y (u, v) ' 

(12) 
u +Y' 

Evaluation of y (u, v) when s = s '  = 0 and substitution of Eq. (12) 

in Eq. (6) gives 

( m t v ,  + v i )  ! 
m! (4, ! 4;  !) - l ( - ) v l + u l  x = c  - (m+I)  

.el& ;vp; 

as 

where we have introduced 

a = p + q .  

Similarly , 

7 



=i 

With subst i tut ion of Eqs. (13, 15)  i; Eq. ( 5 )  w e  f ind  

au ap = ( $ t & ) u  

-1  U1+"l)+U tu! 
- - -  (4 ,  ! 4 ;  ! 4 ,  ! 4;  !) (-) 2 x  ( m t v ,  tv;) ! ( rn tv ,+v ; ) !  

v +v ,v;+u; 
2 a  x c ( v l  4,) c(v1'  4;)  C(v , .e , )  c(v; 4;)  a 

4 ,  ,.el 4 4 ,  
x a  a* x [ ( m t l + v , t v ; )  a * +  ( m + l + v 2 t v i ) a ] s  s t 2 t l  2 

- (m+2 t v , + u I )  -(m+ 2 +v2  +u;) 

(16) 
The  r igh t -hand s ide  of Eq. (3) b e c o m e s  now, a f t e r  mak ing  a b i -  

nomia l  expansion of the  denomina to r ,  

-1 u1+u;+u2+ v 2' 
x (4 ,  ! .el1 ! 4 ,  ! 4 ;  !)  (-) x ( m t v ,  t v l f )  ! ( m t v  t u , , )  ! 

I f  
V l + Y 2  a I v1 +v2 x C(v1  4, )  q.1' 4;)  c(v2 4,)  c(v; 4;) a 
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Equating the coefficients of equal powers of s ,  s ' ,  t ,  t '  of this equation 

and the left-hand side of Eq. (3),  and substituting the value (cf. Eq. (20), I) 

> 

(17) Z - - 1'" , a - n '  
- ($)l'* am+3/2 [ n l !  n2! 
- 

N"1"2 (nl t m ) ! 3  ( n 2 t m ) ! 3  

we obtain 

1'" z2m+3 

2 
nl ! n2  ! nl' ! n2' ! 

V(nl n2 m, nl' n; m)  - - - (nnt)-(m+2) x [(.l ) ( 
t m  ! n 2 t m ) !  (n l '+m)!  (n2'+m)! 

x (m + v1 + vl') ! (m + 'v2 + v i )  ! c(vl 4,) c ( v 2  4,) c(vl' .e1') ~ ( v ;  4;) 

VI+" 2 a ' v l + u 2  I 1  a -( rn+2+v1+vl1 ) -(m+2+v2+vi ) x [(m t 1 + v1 +vir) a* x a* x u  

t ( m + l + v 2 + v 2 ) )  a] . (18) 

Here y stands for the set  of 12 variable integers, 

I -  
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Integration With Respect t o  K 

When Eq. (18) is substituted in Eq. ( l ) ,  and the integration is  c a r -  

r ied out numerically with respect to K ,  the excitation c ros s  section is 

obtained. In some cases  it is  advantageous to ca r ry  this integration 

analitically. To do this, we introduce 

,B a t a ' ;  (21) 

1 
then by Eqs. (4, 14), a = 3 ( p  - i K )  . We introduce fur ther :  

n1 ! n2!  nl l  ! n2' ! 
n1 tm)! (n, tm)! (n,' tm)! (n,' 

1 A = 3 ( 2 2 ) 2 m + 3  (n , ' ) - ( m + 2 )  

~~ ~ _ _ _ _ _  

subject t o  the restrictions 

4, = 0,  I, 2, * * *  , n, - , j 2  - - n2-&, ; v2 = 0, 1, 2, . ' * ,  

I 1  in the transition n1 n2 m -+ n1 n2 m .  

amplitude. 

Eq. (18) gives the desired excitation 

Integration With Respect t o  K 

When Eq. (18) is substituted in Eq. ( l ) ,  and the integration is  c a r -  

r ied out numerically with respect to K ,  the excitation c ros s  section is 

obtained. In some cases  it is  advantageous to ca r ry  this integration 

analitically. To do this, we introduce 

,B a t a ' ;  (21) 

1 
then by Eqs. (4, 14), a = 3 ( p  - i K )  . We introduce fur ther :  

10 
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-(m+2+ul+u;) -(m+2+v * + v i  ) 
H(Y) = ( P - i k )  x ( P + i K )  

x [ ( 2 m + 2 + v l  + v 2 + v l l  + v 2 ' )  P + i ( v l  + v l  - v 2  - v i )  K] . (24) 

Then by Eqs. (1, 18) the cross section will be given by 

1 1  



where N i s  the number of combinations in  the set given by Eq. (19) .  

By writing 

I f  

- ( m t 2 t v 1 t v 2 + v 1  +v2 ) x ( f i + i K )  V l + V  ( p -  i K )  V 2 + V 2 )  H ( Y )  = (P' +K2) 

x 2 a ( t )  ( i K ) t  
t = O  

I I 
vl+vl v2+v2  

- ( m t 2 + v 1 t v 2 + v 1  I I  +v2 ) 
= (P' +K2) 

p=o q = o  t = O  

Y 1 t V 2 + V l  I 1  +v2  -p-q 

a ( t )  ( i K ) p t q t t  , X P  

where 

a(0)  = ( 2 m + 2 + v 1 + v  

we get 

where 

( 2 9 )  
- h = v l + v 2 t v l 1 t v 2 /  ; c = p t q t t  ; w - ( p , q ,  t )  , 

12 



and each summation extends over all possible values of p,  q, t . 
Noticing that .I(y,, yl) = I* (yl, y 2 )  , we can write 

where we have defined 

xm(a t x)-" dx . 

Notice that expression (31) i s  always real .  

Symmetry Conside rations 

It is evident f rom Eq. (2) that 

V n2 n1 m,  n i  "1) m / - K )  = V(nl n 2  m ,  nl '  n i  m ( K )  . ( 

13 



It follows that 

V n1 n2 m ,  nI '  n2' m -K 1 )  
and, by Eq. ( I ) ,  

( 3 6 )  - Q(n2 n l  m ,  n2( nl' m) - Q(nl n2 m ,  nl' n2' m) . 

Eqs. ( 3 5 ,  36) a r e  used to tes t  the accuracy of the numerical  results.  

Multiplicity of States and the Total Cross  Section 

Since the direction of the z-axis is taken along the momentum 

transfer vector K ,  the magnetic quantum number does not change in any 

transition. As n1 t n2 = n - m - 1, n1 

n - m - 1 ; or n - m values. The same is t rue  of n2 . Then the total num- 

ber of combinations of n1 and n2 for a given n andm is n - m. Similarly, 

the total number of combinations of n: and n; for a given n' and m' is 

n' - m' . 

can take the values 0 ,  1,  2 ,  . . . , 

Designating the c ros s  section for the transition nn n m-n' n; n\ m 

by Q(nnln2m, n'n;n;m) , the c r o s s  section fo r  the transition nnln2m -, n'm 

is obtained by summing the fo rmer  c ros s  section over all the final states 

with a fixed m ,  

1 2  

n'-rn- 1 

Q(nnln2m, n'ninim), c Q(nnln2m, n'm) = 

ni=O 

( 3 7 )  

2 .  
I 
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The c r o s s  section for the transition nm -. n ' m  is obtained by averaging 

Q ( n n l n 2 m ,  n'm) over a l l  the initial states with a fixed m , 

.- - 

Q(nm,  n ' m )  = (n - m)-' Q ( n n l n 2 m ,  n ' m ) .  
u 
nl=O 

The c r o s s  section for the transition n -. n' is obtained by averaging 

Q ( n m , n ' m )  with respect to the magnitude of the magnetic quantum number 

n-1 

Q(n,n') = (2n - 1)-' [2 - S(m,o)] Q(nm,  n'm).  (39) 
m=O 

Since the total number of the initial s ta tes  is 

Eq. (39)  can be written alternatively as 

It is interesting to note that the number of independent transitions 

between the levels n and n'  is given by 

When the right hand side is evaluated we obtain 

N = n 2  (n' -+) +:. 

15 



111. RESULTS AND DISCUSSION 

We have calculated within the Born approximation the excitation 

c ros s  section of the hydrogen atom by electron collision for the t ran-  

s i t i o n s n = l  t o n '  2 ,  3 ,  4 ,  5 ,  6 ,  7 ,  8,  9 ,  10; n = 2 to n '  = 3,  4,  5, 6 ,  7 ,  8 ;  

n = 3 to n '  = 4,  5,  6 ,  7 ,  8 ;  n = 4 to n '  - 5, 6 ;  and n = 5 to n '  = 6 by 

employing parabolic coordinates. Previous s imilar  calculations in the 

Born approximation using spherical  coordinates have been made for 

the transitions n = 1 to n '  = 2 ,  3 ,  4,  5,  6 by Mc Carrol l4;  n8 = 2s to 

n '  = 3 ,  4 ,  5 ,  6 ,  7 ,  8 ,  9 ,  10 by Boyd5; n8 = 2p , m = 0 ,  1 to n '  = 3,  4,  5, 6 ,  

7 ,  8,  9 ,  10 by McCrea and McKirgan6; n = 3 to n '  = 4 by McCoyd, 

Milford and Wah17. There a r e  few other calculations for certain op- 

tically allowed transitions between sublevels of higher levels but they 

do not give the total transition c ros s  section between two levels. 

- 

As a check on the consistency of the calculations, comparisons a r e  

made in  this paper with a l l  the values available in spherical  coordinates. 

Table I gives 

coordinates. 

higher states 

method given 

the excitation c ros s  section from the ground state in  both 

The agreement is excellent. The c ross  section due to a l l  

which a r e  not l isted explicitly can be calculated by a 

in  Ref. 4. This is  designated by 2 Q(1, i ) ,  where n 
i=n+ 1 

i s  the upper state of the highest transition whose c ros s  section is 

l isted in  the table. Q(T) is the total excitation c ros s  section. 

Table 11 compares the c ros s  sections in  the two coordinates for 

the transition n = 2 to n '  = 3 . Theoretically we must  have 

16 



Q(2pk1) = Q(O0, 01) + Q ( O 0 ,  10)  = 2Q(OO, 01) (43) 

Q(2s) + Q(2p0)  = Q(O1, 02)  + Q(01, 11) + Q(o1, 20) 

+ Q(l0, 02) + Q ( l 0 ,  11) f Q ( l 0 ,  20) 

= [2  Q(O1, 02) + Q(O1, 11) f Q(O1, 20)] (44) 

where Q(nl n2 ,  "1) n2') is the c ross  section for the transition between 

the sublevels n1  n2 and nl' "21 , and where use  has been made of the 

symmetry relation (36). 

i n  Table 11. Q(2, 3 )  i s  the excitation c ros s  section for the transition 

n = 2 to n '  = 3 , averaged over the initial states and summed over the 

final states.  

The above equations a r e  shown to be satisfied 

F o r  brevity in the remaining of the tables only the averaged c ross  

section for  transition between the principal quantum numbers a r e  

listed. Table III gives the c ros s  section for the transitions n = 2 to 

n '  = 4, 5 ,  6 ,  7, 8 , and the total excitation c ros s  section from the n = 2 

level. Table IV i s  constructed to verify the excitation c ros s  sections 

for n = 3 to n'  4 as obtained in  Ref. 7.  Although the agreement is 

satisfactory,  a t  low energy the two results differ to some extent. As 

our values a r e  obtained both by the closed and the integral forms,  and 

in the case of the integral  form convergence to the numbers given i s  

achieved by decreasing the mesh sizes of the numerical integration, 

i t  is believed that our resul ts  a r e  more accurate.  

Table V gives the excitation cross section for the n 3 to the 

n' = 4 ,  5 ,  6 ,  7 ,  8 levels,  and the total excitation c ros s  section from the 

n = 3 level. The contribution to the total c ros s  section of the s ta tes  

17 



not listed i s  obtained by the method outlined in Ref. 4 and the known 

value of ionization of the n = 3 a s  given in  I. 

To test  the accuracy of the Born approximation, i t  i s  necessary to 

compare the resul t  of the Born calculation with experiment. 

done in  Fig. 1 along with the more  elaborate theoretical calculation of 

close coupling l 3 ? l 4 ,  and the classical  theory of excitation given by 

Gryzinski 1 5 .  According to this classical  theory, i f  the energy of the 

This is  

incident electron is given as E, in rydberg and the atom is excited 

from the state n to n ' ,  the excitation c ros s  section is  given by 

2 
w, 4.030777at, a = ( * 2 ~ , ) - l  , y = 2 - (2) (45) 

Compared to experiment, the Born approximation gives too high 

values,  the classical  theory gives too low, and the close coupling ap-  

proximation gives the best  agreement.  

The disagreement between Born calculations and experiment may 

get worse for the excitation of higher s ta tes .  This is due to the form 

18 



of the wave function of the bound electron. 

tion is used to evaluate the matr ix  elements of the Born calculations, i t  

is implicitly assumed that the interaction potential between the two 

electrons is  small  compared with the interaction of the nucleus and 

the atomic electron. This, however, may not be the case for the excited 

s ta tes  where the average distance of the electron from the nucleus 

is large.  

Since hydrogenic wave func- 

Fig.  2 compares different excitation c ros s  sections and the ioniza- 

tion c r o s s  section of the n = 1 level. F igs .  3 and 4 make the same 

comparison for the n = 2 and the n 3 levels. 

Table VI gives the excitation cross  section of n = 4 t o n '  = 5, 6; 

and the total excitation c ross  section for this level, while Table VI1 

gives the excitation c ros s  section of n = 5 to n '  = 6 .  F i g s .  5 and 6 

show the results of these tables graphically. In F i g .  6 the classical  

curve is also drawn for comparison. 

excitation is  open to question a s  transition to discrete levels cannot 

be described classically. 

The classical  description of the 

Although the excitation of the ground state of hydrogen to the 2p state 

has  a n  order  of magnitude la rger  cross  section than the excitation to 

the 2s state,  especially at high incident electron energies13' 14, it should 

be argued that this does not mean that for the excitation of higher 

s ta tes  the c ross  section of non-optically allowed transitions can be 

neglected. 

tude of the momentum transfer of the incident electron and a is  the 

This neglect is  valid when Ka << 1, where K is the magni- 
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extent of the charge distribution of the bound electron before and af ter  

collision. 

order  of magnitude la rger  than the corresponding a for the ground state. 

This fact is  evidenced by noting that the excitation c r o s s  section for 

optically allowed transitions in n = 5 to n '  = 6 given in Ref. 9 i s  con- 

siderably lower than that given in Fig.  6. Similarly it can be argued 

that the dipole approximation within the Born approximation becomes 

less  valid for excitation of the higher levels. 

F o r  the excitation of high levels,  a becomes more  than an  

Fig. 7 gives the total inelastic c ros s  section by electron collision, 

including excitations to a l l  levels and ionizations, for the f i r s t  5 levels 

of atomic hydrogen. 

In closing i t  should be mentioned that the c ros s  section for de- 

excitation induced by electron collision is  obtained through 

Q ( f ,  i )  k, ki f )  7 

where Q ( i ,  f )  i s  the corresponding excitation, and k i  and k, a r e  the 

initial and final wave numbers of the incident electron in the excitation 

process. 

I wish to thank Robert Baxter for  the efficient programming of this 

problem, Bernard Rugg for  taking control over the production of the 

tables, and the Computing Branch of the Theoretical Division for  pro- 

viding their generous services.  
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Table 11. Excitation c ros s  sections among the sublevels of n = 2 - 
n'  = 3 transition in units of 7~ a '0. m is the absolute value of the magnetic 
quantum number. Cross  sections in parabolic coordinates a r e  desig- 
nated by Q(nl n 2 ,  n; n;) with nl n 2  and n; n; belonging to the initial and 
the final states. Il is the sum of Q(2s) and Q(ZpO), while 1, is the sum 
of the three c ros s  sections precedingX2. 
relation Q(nl n2 n; n;) = Q(n2 nl n; n i ) .  The las t  two columns show 
the excitation cross  section of n = 2 to n' = 3 in spherical  and parabolic 
coordinates. 

Note has been taken of the 

a. See  Rei .  6 .  
b. See  Ref .  5. 



Table III. Excitation c ros s  sections of n = 2 level to n '  = 4, 5, 6 ,  7, 
8 levels in  spherical  and parabolic coordinates in units of 7~ ai. 
spherical  coordinates see  Ref. 5,6. 

For 

Impact Energy Q(2.4) , 

0.16 2.18 

I 0.2025 

I 0.25 

7.385 

12.016 

19.58 

26.66 

10.791 

8.335 

6.539 

5.251 

10.794 

8.334 

6.538 

5.250 

I 2.56 I 33.43 I 4.308 I 4.309 

3.24 44.06 3.602 3.602 

4.00 54.40 3.059 3.059 

4.84 65.82 2.627 2.632 

1 5.76 I 78.34 I 2.292 I 2.293 1 !;:: ~ 91.94 1 2.015 ~ 2.016 

106.62 1.787 1.792 

122.40 1.601 1.596 

a. By interpolation. 

3.933 

1.132 I 1.127 10.556 

0.584 I 0.582 10.287 

1.706 I 10.868 I 10.491 I 0.570 I 92.037 I 
2.435 1.392 1.395 0.879 0.880 1.566 95.240 

2.049 1.182 1.186 0.752 0.753 1.351 77.433 

1.570 10.907 10.907 I 0.576 10.576 I 1.033 I 60.633 I 

0.361 10.207 10.207 I 0.131 10.131 I I 
0.319 0.183 0.183 0.116 0.116 

0.284 0.163 0.163 0.102 0.103 



ryd 0.0543 0.0574 0.0616 0.0711 0.1988 

e V  0.7391 0.7809 0.8384 0.9675 2.704 

S 400.66 481.35 555.96 653.24 617.59 

P 416.20 494.92 569.64 665.55 623.06 

r y d  0.2394 1.021 4.366 8.882 100.1 

136.1 e V  3.256 13.89 59.38 120.8 

S 567.33 231.83 77.103 43.375 5.513 

P 572.67 233.86 77.884 44.088 6.704 

Impac t  
Ene rgy  

Q(394) 

1 

Impac t  
E n e r g y  

Q(3 ,4)  



Table V. Excitation cross section for the transition n = 3 to nt = 
4, 5, 6, 7, 8, in units of 7~ a i .  

Impact Energy 

rYd e V  
Q(3,4) Q(3,5) 

0.07 0.95 657.13 

0.08 1.09 709.21 83.365 

0,111 1.51 735.25 126.98 

0.16 2.18 676.85 125.33 

0.36 4.90 460.91 83.690 

0.64 8.70 322.31 56.347 

1.00 13.60 237.39 40.326 

1.44 19.58 182.51 30.340 

1.96 26.66 145.08 23.692 

2.56 33.43 118.43 19.067 

3.24 44.06 98.510 15.709 

4.00 54.40 83.477 13.193 

6.25 85.00 58.489 9.118 

9.00 122.4 43.624 6.713 

Q(3,6) Q(3,7) Q(3,8) 2 Q(3,i) Q(T)  
i= 9 

42.918 19.164 9.941 12.037 946.290 

47.257 23.564 13.668 22.860 909.529 

31.858 16.084 9.436 16.018 617.996 

21.160 10.615 6.208 10.517 427.157 

14.976 7.474 4.352 7.355 311.873 

11.193 5.549 3.228 

8.689 4.290 2.489 

6.941 3.453 1.991 

5.699 2.805 1.621 

4.753 2.341 1.380 2.298 107.44 

3.246 1.607 0.967 

2.377 1.186 0.661 



Table VI. Excitation cross  section for  the t r a n s i t i o n  n = 4 to  n' = 

0.0625 

0.111 

0.16 

0.36 

5,  6. 

I I 

0.850 

1.510 

2.176 

4.896 

Impac t  E n e r g y  I 

660.11 

1 I 
I I 

548.98 5003.72 

0.408 3081.30 

462.07 

264.25 

169.66 

I 0.04 I 0.544 I 3778.20 

474.59 3520.60 

269.03 2100.22 

171.37 1390.8 1 

3.24 

4.00 

6.25 

9.00 

1 0.64 1 8.704 

44.0 6 306.32 

54.40 261.54 

85.00 190.23 

122.4 150.46 

3794.63 

3137.40 

2583.94 

1566.94 

1049.78 

r I I I 1.00 I 13.60 I 758.89 

I 1.44 I 19.58 I 581.06 

1 1.96 I 26.66 

I 2.56 I 33.43 

450.49 

366.69 

432.49 I I 
570.52 I 

118.64 I 119.22 I 996.75 I 



Table VII. Excitation c ross  section for the transition n = 5 to n' = 
6 in  units of 7~ a i .  

Impact 
Energy 

Q(5,6) 

rYd . 0.0169 0.0225 0.04 0.111 0.16 

eV 0.230 0.306 0.544 1.510 2.176 

11,307.87 13,791.58 13,588.04 8,698.01 6,889.87 

Impact 
Energy 

Q(5,6) 

rYd 0.36 0.64 1 .oo 1.44 1.96 

e V  4.89 6 8.704 13.60 19.58 26.66 

7r.i 3,979.62 2,628.03 1,907.17 1,485.27 1,22 1.40 

rYd 2.56 3.24 4.00 6.25 

33.43 44.06 54.40 85.00 eV 

Q(5,6) r a ;  1,047.77 928.78 844.50 718.80 

Impact 
Energy 

9.00 

122.4 

654.35 
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Fig. 2. Excitation of the ground state of the hydrogen to the n = 2, 3, 4, 
5,  6, 7 states. Q ( 1 , i )  i s  the ionization c r o s s  section of the ground state 
by electron collision. 
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